Climate, Weather and Water Science

Chris Fairall

Air Sea/Ice Fluxes

Air-Sea Ice Fluxes

Light Winds to Hurricanes Poles to Tropics Momentum, Heat, Moisture, Trace Gases, Aerosol Particles, Radiation, Precipitation

Christopher W. Fairall¹, Jian-Wen Bao¹, Andrey A. Grachev^{1, 2}, Jeff Hare 1, 2, Ludovic Bariteau 1, 2, Ola Persson 1, 2

¹NOAA Earth System Research Laboratory/Physical Science Division, Boulder, Colorado, USA ² Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA

Approach

Direct Flux Observations

Tech Development, Nearsurface, Boundary-Layer Observations

Flux Parameterization

Similarity scaling, cloud-radiative coupling, deposition velocities

Ocean Flux Observing System

Research Vessels (SAMOS), Ship Opportunity (COADS), Flux Reference Buoys (OceanSites), Satellites (SEAFLUX)

Fundamental Physics

Navier-Stokes, Turbulent Kinetic Energy budget equations, scalar conservation

Research Numerical Models

1-D Closure, Large Eddy Simulation, Mesoscale, Cloud Resolving, Regional

NOAA Models

Operational Numerical Weather
Prediction
Climate Models

 Direct data used principally to develop parameterizations, improve the observing system, and 'verify' model results

Range of Estimates of Evaporation Rates From Three Global Products

Comparison of monthly mean latent heat fluxes from NCEP (Kalnay et al. 1996), ERA-40 (Uppala et al. 2005), and Optimal Analysis Flux (Yu and Weller, 2007).

TECHNOLOGY EXAMPLE: Motion-Corrected Eddy- Covariance Turbulence Measurements from Ships

'Planes, Trains, and Automobiles' - A Diversity of Experimental Approaches

Surface Turbulent Flux Parameterizations

Turbulent Fluxes: Bulk Parameterization

Flux= Mean correlation of turbulent variables, <w'x'>

MetFlux – Dominated by **atmospheric** turbulent transfer physics

GasFlux – Dominated by **oceanic molecular** transfer physics;

Enhanced by whitecap bubbles

$$MetFlux: \overline{w'x'} = C_x U(X_s - X_r) = C_x U\Delta X$$

Gas
$$Flux$$
: $w'x' = k_x \alpha_x \Delta X$ $\alpha = sol.$

$$Particles: F_{deposition} = -V_d(r)\overline{n(r)}$$

Transfer coefficients computed from direct flux measurements

$$C_x = -w'x'/[U\Delta X]$$

SAMPLE PRODUCT: NOAA COARE AIR SEA TURBULENT FLUX MODEL

- 1996 Bulk Meteorological fluxes
 - Update 2003 (7200 covariance obs*)
 - Oceanic cool skin
 - Ocean diurnal warm layer
- 2000 CO, [U. Conn and Columbia U]
- 2003 Hurricane Sea Spray
- 2004 DMS [U. Hawaii]
- 2005 Snow/Ice [US Army CRREL]
- 2006 Ozone [U. Colorado]
- 2009 Hurricanes [UNSW Australia]

PSD cruises Pacific Ocean 1991-2001

*Complete flux data time series publically available under 'Data Sets' at http://www.esrl.noaa.gov/psd/psd3/wgsf/

Page 8

Synthesis on Turbulent Flux Parameterizations: Combined Observations from ESRL, UConn, UMiami

Neutral turbulent transfer coefficients at z=10 m as a function of wind.

Symbols are **Direct Data** (14,450 observations; 90% between 3 and 17 m/s)

Dash Lines are **Parameterizations**

*Observations of 3 Research Groups Agree Closely (with 5%) But Need More High Speed Data

*Spread of Parameterizations is Greater Than Spread of Observations

*NOAA COARE model is the best fit

Real Progress!

 $NetHeatFlux = Solar_{net} + IR_{net} + Latent + Sensible$

- Dramatic improvements in surface flux observations
- Gas transfer work featured as a highlight in the WCRP report on 30 years of accomplishments
- Major contributor to NOAA's
 Office of Climate Observations

Time series of surface flux component **accuracies** for Flux Reference Buoys from 1970's to today (Colbo and Weller, 2009)

Models vs. Data 'Climatology'

ESRL-PSD Tao Buoy Maintenance Cruises, 6 October and 3 April deployments: flux, boundarylayer, cloud systems

[Large and Yeager 2004] [Large and Yeager 2004] $NetHeatFlx = Solar_{net} + IR_{net} + Latent + Sensible$ [Large and Yeager 2004] (1999-2002) [Fairall et al. 2008]

WHOI (1984-2002) analysis

[Yu and Weller 2007] CORE (1984-2004)

Model TAO buoy

The Future*

- Regimes
 - High winds (U> 15 m/s)
 - High latitudes
- Processes
 - Wave Effects
 - Sea Spray and Bubbles
- NOAA Process Observing Systems
 - P-3 wave/interface
 - Research Vessels and SAMOS
 - New generation flux buoys
- NWP/Climate Model Fluxes
 - Operational NWP fluxes -SURFA

Ratio of heat to momentum transfer coefficients: Equivalent to ratio of energy input to frictional loss.

*Fairall, C. & 18 Co-Authors, 2010: Observations to Quantify Air-Sea Fluxes and Their Role in Climate Variability and Predictability in *Proceedings of OceanObs'09: Sustained Ocean* Observations and Information for Society (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., Harrison D.E. & Stammer, D., Eds., ESA Publication WPP-306.

Page 12

Contrast to Stress/Heat Coefficients: Large Uncertainties Remain for Gas Transfer

Gas Transfer Sensitivity to:

- Solubility
- Wave breaking
- Bubbles
- Tangential vs. Pressure (wave) stress
- Surfactants
- Temperature
- Complex chemistry
- Biology

